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INTRODUCTION 

The blood supply to the brain, in addition to its metabolic func­

tion, acts as a cerebral coolant and as a vehicle for temperature informa­

tion from the body core to the thermoregulatory center in the preoptic/ 

anterior hypothalamic area. The removal of heat from the brain by the 

blood is important since the brain has the highest rate of metabolic heat 

production of all body tissues (Hales, 1973) and is, at the same time, 

the most vulnerable to damage by hyperthermia (Burger and Fuhrman, 1964a, 

b). 

In a neutral environment the cerebral arterial blood in all homeo-

therms at rest is cooler than the heat-producing nervous tissue (Baker 

and Hayward, 1967a,b). However, some animals (viz., the sheep, ox, pig, 

dog, cat, gazelle, and chicken) which possess a carotid rete, situated 

between the extracranial and intracranial blood supply, can maintain a 

brain temperature which is, on the average, 1.0° - 1.5°C below core 

temperature during hyperthermic conditions. In other animals with no 

carotid rete (viz., rat, rabbit, monkey, ape, and man), this temperature 

differential between cerebral blood and core blood during hyperthermia 

is not as great as compared to the carotid rete species. 

The mechanism by which carotid rete species maintain a lower brain 

temperature in spite of increasing body temperature was first proposed 

by Magilton and Swift (1967, 1968, 1969). They observed that changes in 

temperatures of the angularis oculi vein and the brain paralleled 

temperature changes in the alar fold of dogs irrigated with warm or cold 

water. They hypothesized that heat is normally lost from the venous 
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plexuses In the nasal cavity to the ambient air ("external heat 

exchanger") during respiration. This cooled venous blood, in turn, 

drains into the cavernous sinus via the dorsal nasal, angularis oculi 

and ophthalmic veins, where countercurrent heat exchange results between 

the internal carotid rete and the cooled venous blood surrounding it 

("internal heat exchanger"). This mechanism has since been demonstrated 

to occur in almost all carotid rete species. Cerebral cooling via heat 

loss from the nasal mucosa has been shown to occur in noncarotid rete 

species like rabbit (Kluger and D'Alecy, 1975) and is also considered 

possible in humans (Caputa and Cabanac, 1978; Cabanac and Caputa, 1979). 

Not only the thermoregulatory center in the preoptic/anterior 

hypothalamic area is activated by temperature changes in the cerebral 

arterial blood (Forster and Ferguson, 1952; Newman and Wolstencroft, 

1960; Bligh, 1963b; Baldwin and Yates, 1977), the thermal changes of this 

center have also been shown to affect the secretions of some pituitary 

hormones. Direct thermal stimulation of this area via implanted thermodes 

has been shown to influence the blood levels of ADH, ACTH, and TSH in a 

variety of animals (Itoh, 1954; Andersson et al., 1962a,b; Gale et al., 

1970; Forsling et al., 1975). However, the extremes in thermode tempera­

ture (30°-42°C) needed to provoke changes in these pituitary hormone 

levels are well beyond the temperatures normally occurring in the body 

as well as beyond the levels tolerated by the body for any length of 

time without serious effects to vital life processes. If this thermo­

regulatory center does influence TSH secretion, it should provoke signifi­

cant changes in TSH secretion under small variations in hypothalamic 
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temperatures noTnally occurring in the body. 

The ovine hypothalamus has been reported to be the coolest portion 

of the brain, as it receives its entire blood supply from vessels 

emerging from the "internal heat exchanger" (Baker, 1972; Baker et al., 

1974). Besides, Krabill (1979) was able to significantly increase tem­

peratures around the hypothalamus in the sheep by interrupting the normal 

nasal breathing which reflected in a decreased efficiency of the counter-

current heat exchange mechanism within the cavernous sinus. In view of 

the above, this study was undertaken to test the hypothesis that inter­

ruption in normal nasal breathing, which would derange the efficiency of 

heat exchange within the cavernous sinus and thus increase the local 

temperature around the hypothalamus, will affect the serum levels of TSH 

in the nonstressed sheep. 

This same mechanism of brain temperature regulation is also believed 

to occur in humans; thus, this work may have application particularly in 

mongoloids (Down's syndrome) whose nasal air flow, to some extent, is 

impaired by the underdevelopment cf the facial bones and who have been 

shown to have a variety of endocrine dysfunctions of the hypothalamus 

and/or pituitary gland (Murdoch et al., 1977). Also endocrine changes 

may be present to a varying degree in people with permanent tracheos­

tomies, however, possible endocrine changes in these people as compared 

to normal nasal breathers have not yet been investigated. 
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LITERATURE REVIEW 

Brain Temperature and Its Regulation 

Since the brain produces the greatest amount of heat among all body 

tissues (Hales, 1973) and it is also the most vulnerable to damage by 

hyperthermia (Minard and Copman, 1963; Burger and Fuhrman, 1964a,b; 

Frascella and Frankel, 1969; Kuchereko, 1970; Nemoto and Frankel, 1970; 

Wells, 1973; Bowler and Tirri, 1974; Caputa et al., 1976a,b; Carithers 

and Seagrave, 1976), the regulation of brain temperature is of primary 

concern to any homeotherm. Serota and Gerard (1938) and Rawson and 

Hammel (1963) stated that brain temperature in mammals is a function of 

four variables, viz., the rate of metabolic heat production, the arterial 

blood temperature, the rate of blood flow, and the rate of heat conduc­

tion. The rate of heat production is an important determinant of brain 

temperature; however, studies have shown that the temperature of the 

brain is primarily controlled by the rate of heat removed from the brain 

by the cerebral arterial blood in the rat (Abrams and Hammel, 1964; Abrams 

et al., 1965), rabbit (Kahn, 1904; Heymans, 1921; Baker and Hayward, 1967a; 

Findlay and Hayward, 1969; Caputa et al., 1976a,b), cat (Newman and 

Wolstencroft, 1956, 1960; Holmes et al., 1960; Baker and Hayward 1967b; 

Baker, 1972), dog (Moorhouse, 1911; Jelsma, 1930; Hammel et al., 1958; 

Hayward, 1968; Baker et al., 1974; Baker and Chapman, 1977), sheep (Baker 

and Hayward, 1968a,b,c,d; Baldwin and Yates, 1977), ox (Ingram and Whittow, 

1962a,b, 1963), and monkey (Rawson and Hammel, 1963; Hayward et al., 1965, 

1966; Hayward, 1967; Hayward and Baker, 1968a,b, 1969). These investi­

gators discovered that thermal shifts in brain temperature paralleled 
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thermal shifts cerebral arterial temperature. 

The heat removal capability of the cerebral blood is a function of 

its temperature and rate of flow. Serota and Gerard (1938) suggested 

that, for heat to be removed from the brain, the arterial blood supply 

must be cooler than the brain tissue which has been shown to be true in 

different mammals (Hayward et al., 1966; Baker and Hayward, 1967a,b, 

1968d; Hayward, 1968; Hayward and Baker, 1968b, 1969; Baker, 1972; Baker 

et al., 1974). These investigators reported that a gradient of increas­

ing temperature exists from the cerebral arteries to the center of the 

brain in all mammals. In addition, Hammel et al. (1963) and Hayward and 

Baker (1968a,b, 1969) demonstrated in the monkey that hypercapnia, which 

caused a dilatation of cerebral blood vessels due to an increase of arterial 

COg tension, enhanced the flow of cooler arterial blood through the brain 

and accelerated the process of brain cooling, while during hypocapnia, 

which produced vasoconstriction, there was a decrease in cerebral blood 

flow and an increase in brain temperature. Thus the cerebral blood, in 

addition to its nutritive function, acts as a cerebral coolant. 

Carotid Rete vs. Noncarotid Rete Species 

Although the cerebral arterial blood in all homeotherms at rest in 

a neutral environment is cooler than the heat-producing nervous tissue 

(Baker and Hayward, 1967a), the cooling of the brain by the cerebral blood 

in a hyperthermic environment or during excessive exercise varies among 

species. For example, the cerebral arterial blood in species with a 

carotid rete like the sheep, ox, dog, cat, gazelle, chicken, and rhea 
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have been shown to be, on the average, 1.0-1*5°C cooler than the blood at 

the aortic arch during heat-stressful conditions, while in noncarotid 

rete species like the rat, rabbit, monkey, and humans, the-temperature 

differential between the cerebral arterial blood and the core was not as 

great during hyperthermia (Hayward et al., 1966; Hemingway et al., 1966; 

Hunter and Adams, 1966; Baker and Hayward, 1967a, 1968a,b; Hayward and 

Baker, 1969; Hayward, 1967; Richards, 1970; Baker, 1972; Taylor and Lyman, 

1972; Baker and Chapman, 1977; Cabanac and Caputa, 1979). 

Daniel et al. (1953) described the carotid rete as a compact network 

of intertwined, freely anastomosing arteries interposed along the course 

of the internal carotid artery, which lay within a venous sinus. In the 

ox, sheep, goat, and pig, the rete is situated intracranially within the 

cavernous sinus, which receives cooled venous blood from the cranial and 

nasal areas; in the cat, however, the rete is situated extracranially 

within the pterygoid plexus (Baker and Hayward, 1968a; Hayward and Baker, 

1969). Daniel et al. (1953) also found that in those species with a well 

developed carotid rete (viz., the ox, sheep, goat, pig and cat), the 

extracranial segment of the internal carotid artery is either regressed 

or entirely absent. The intracranial segment of the internal carotid 

artery persists, representing the efferent vessel of the carotid rete, 

which pierces the dura and contributes to the formation of the cerebral 

arterial circle (Baldwin and Bell, 1963; Baldwin, 1964). In the dog, 

which has a rudimentary carotid rete, the internal carotid artery passes 

through the intracranial cavernous sinus, receiving only a few rete 

branches, while in the noncarotid rete species (rat, rabbit, monkey. 
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human), the int _rnal carotid artery passes through the sinus as a single 

vessel (Daniel et al., 1953). In the cat, sheep, goat, and ox, the caro­

tid rete is formed by the rostral and caudal rete branches of the maxil­

lary artery, while in the pig, the major contribution is via the ascending 

pharyngeal artery (Daniel et al., 1953). In addition, the carotid rete, 

in the ox and sheep, can receive blood from the occipital and vertebral 

arteries via contributions from the basi-occipital plexus (Baldwin and 

Bell, 1963; Baldwin, 1964). 

Mechanism of Brain Temperature Regulation 

Since most mammals pant upon exposure to heat (Baker and Hayward, 

1968c, Bligh, 1966; Robertshaw, 1976), many researchers have investigated 

the possible role of the nasal cavity in brain temperature regulation. 

Cole (1954) noted that the temperature of inspired air is normally raised 

close to body temperature in the upper respiratory tract. Mather et al. 

(1953) and Bligh (1957b,c) found no change in the temperature of the 

blood which traversed the lungs during panting, while Ingram and Whittow 

(1962a,b) demonstrated in the ox that the cranial blood cooling occurred 

in the upper respiratory tract with panting. Investigations in the dog 

(Hammel et al., 1958; Jackson and Hammel, 1963; Hellstrom and Hanmiel, 

1967; Baker et al., 1974; Baker and Chapman, 1977), cat (Forster and 

Ferguson, 1952; Baker, 1972), sheep (Bligh, 1959, 1963b; Hemingway 

et al., 1966; Hayward and Baker, 1969; Rawson and Quick, 1972; Young 

et al., 1976), ox (Brody, 1948; Findlay and Ingram, 1961; Ingram and 

Whittow, 1962a,b), gazelle (Taylor, 1969), antelope (Taylor and Lyman, 
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1972), rabbit (Japuta et al., 1976a,b), and domestic fowl (Randall, 1943; 

Richards, 1970) demonstrated that increases in respiratory rate during 

heat exposure resulted in significant cooling of the brain. Baker and 

Chapman (1977) stated that the degree of brain cooling in exercising dogs, 

due to increased nasal ventilation, is almost three times as great as 

dogs at rest. In addition, shifts in brain temperature have been found 

to be associated with changes in heat loss from the nasal mucosa in the 

cat (Baker, 1972), sheep (Baker and Hayward, 1968a,b), and monkey (Hay-

ward and Baker, 1968b). Hunter and Adams (1966) believed that in the cat, 

convective and evaporative heat losses from the upper respiratory tract 

had a direct cooling effect on the brain. 

Magilton and Swift (1967, 1968, 1969), while irrigating the alar 

fold of the dog with warm and cold water, observed parallel increases and 

decreases, respectively, in the temperature of the angularis oculi vein 

and in the brain. From this they hypothesized that the fluctuations in 

brain temperature resulted from the transfer of heat from the venous 

plexuses in the nasal mucosa ("external heat exchanger") to the ambient 

air. This cooled venous blood, in turn, drains into the cavernous sinus 

of the dog via the dorsal nasal, angularis oculi, and ophthalmic veins, 

where countercurrent heat exchange results between the internal carotid 

rete and the cooled venous blood surrounding the former ("internal heat 

exchanger"). This concept of countercurrent heat exchange between blood 

in the carotid rete and cavernous sinus is supported by similar observa­

tions in the dog (Baker and Chapman, 1977), cat (Baker and Hayward, 

1967b), sheep (Baker and Hayward, 1968a,b,c,d)and gazelle (Scott, 1954). 
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Blatt et al. (]J72) described that the secretions of the lateral nasal 

gland, in the dog, increased in hot environments and accounted for almost 

half of the evaporative heat loss during panting. In addition, similar 

to the vasomotor responses controlling the rate of blood flow through the 

skin and thereby regulating heat loss, vasoconstriction and vasodilata­

tion of the nasal vessels have been shown to decrease and increase, 

respectively, evaporated heat loss from the nasal mucosa, which increased 

and decreased, respectively, brain temperature in the rabbit (Caputa et 

al., 1976b), cat (Baker, 1972), sheep (Baker and Hayward, 1968a,b), and 

monkey (Hayward and Baker, 1968b). These investigators reasoned that 

vasoconstriction of the nasal mucosa resulted in a reduced flow of cooled 

venous blood toward the cavernous sinus, affecting an optimum countercur-

rent heat exchange between arterial and venous blood in the area and, 

thus, increasing the brain temperature. Vasodilatation, on the other 

hand, increases the flow of cool venous blood from the nasal area to the 

cavernous sinus, resulting in an efficient countercurrent heat exchange 

and thereby decreasing the brain temperature. Further evidence of evapo­

rative cooling in the nasal cavity has been obtained from studies in the 

ox, sheep, goat, rabbit, pig, cat, and dog, which demonstrated a linear 

relationship between available humidity level of the inspired air and the 

respiratory frequency (Sihler, 1880; Lee et al., 1941; Lee and Robinson, 

1941; Robinson and Lee, 1941a,b,c; Riek et al., 1950; Beakley and Findlay, 

1955; Bligh, 1957a, 1959, 1963a,b; Baker and Hayward, 1968a). These in­

vestigators observed that raising the humidity of hot, dry inspired air 

caused a marked increase in respiratory rate. They reasoned that 
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increased humid-ty lowered the evaporative heat loss at the nasal mucosa 

which, in turn, caused a rise in the brain temperature, provoking an 

increase in respiratory ventilation in an attempt to cool the brain. 

Heat loss at the nasal mucosa depends not only upon the rate of 

blood flow through its surface but also upon the rate and pattern of air 

flow over its surface (Baker, 1972). During panting, air is drawn 

rapidly across the nasal mucosa and heat is lost from the mucosa by con­

vection and vaporization (Scott, 1954). According to Negus (1949), the 

majority of animals pant with their mouths closed because the epiglottis 

normally lies along the nasal surface of the soft palate and thus pre­

vents mouth breathing. True mouth breathing is only possible in apes 

and man, where the larynx opens into the oropharynx instead of the naso­

pharynx. The unidirectional airflow in panting dogs, which tend to 

breath in through the nose and out through the mouth, allows maximum 

evaporation to occur from the nasal mucosa (Schmidt—Nielsen et al., 1970) 

and eliminates almost twice as much heat (Scott, 1954). The essential 

feature of rapid shallow breathing during panting (Anrep and Hammouda, 

1933) is that it provides the most efficient means of increasing ventila­

tion in the nasal cavity without increasing alveolar ventilation 

(Robertshaw, 1976), tidal volumn (Whittow et al., 1964; Schmidt-Nielsen 

et al., 1970) or changing the blood-gas balance (Whittow et al., 1964). 

Although Albers (1961) and Siemon et al. (1966) reported substantial 

increases in oxygen consumption in panting dogs and Gonzalez et al. (1971) 

believed that panting causes increased metabolic heat production, Hammel 

et al. (1958) and Crawford (1962) found that heat production during panting 
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in the dog is minimal since dogs pant at the resonant frequency of the 

respiratory system, thereby maintaining air flow with the least effort. 

In addition, Whittow and Findlay (1968) estimated that the oxygen cost 

of panting in the ox represented only 11% of the total oxygen consumption. 

Studies in the rabbit (Kluger and D'Alecy, 1975; Caputa et al., 

1976a), dog (Baker et al., 1974), cat (Hunter and Adams, 1966), and sheep 

(Young et al., 1976; Krabill, 1979) provided additional support for the 

concept that nasal air flow is necessary for the brain temperature regu­

lation. When these investigators interrupted normal nasal breathing 

either by mechanical or chemical means, there was an immediate increase 

in the brain temperature. Conversely, resumption of normal nasal 

breathing caused an immediate drop in brain temperature. In addition, 

Dixon et al. (1949) and Toppozada and Gaafar (1976) found that the tem­

perature of the nasal mucosa in tracheostomized humans was 1.2°C higher 

than that of the normal and they attributed this to the absence of normal 

air flow through the nasal cavity. Krabill (1979) observed a similar 

effect in the sheep when normal nasal breathing was interrupted by a 

chronic implant of an upper respiratory bypass cannula into the trachea. 

Investigations have shown that heat loss in the nasal cavity is also 

important in brain temperature in noncarotid rate species. Panting in 

the rabbit has been shown to lower brain temperature by as much as 0.5°C 

during hyperthermic conditions (Kluger et al., 1973; Kluger and D'Alecy, 

1975; Caputa et al., 1976a,b). Nasal mucosal vasodilatation and vaso­

constriction have been observed to decrease and increase, respectively, 

the brain temperature in rabbits, similar to that observed in carotid 
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rete species (K?uger and D'Alecy, 1975; Caputa et al,, 1976a,b). Since 

the ophthalmic and pterygoid venous plexuses reçoive cool blood from the 

nasal cavity and the temperature changes in these plexuses, caused by 

nasal vasomotor changes, paralleled the temperature changes in the brain, 

the above investigators suggested that selective cooling of the rabbit's 

brain primarily occurs via conductive heat exchange from the brain through 

the cranial vault to the venous blood in these plexuses. Besides, a 

limited amount of countercurrent heat exchange may also occur within the 

cavernous sinus of the rabbit (Kluger and D'Alecy, 1975). In humans, 

the same veins that drain the nasal cavity in carotid rete species, the 

ethmoidal and sphenopalatine veins, communicate with the cavernous sinus 

via the ophthalmic veins and the pterygoid venous plexus, respectively 

(Baker and Hayward, 1968a). Also, Ralston and Kerr (1945) and Scott 

(1954) observed that in a warm environment the nasal mucosal vessels of 

humans dilate, while in cold environments they constrict. Dixon et al. 

(1949) found that the mucosal vessels of the nose in laryngectomized 

humans were congested and the surface temperature of the nasal cavity was 

1.2°C higher than in the normal person. They stated that these effects 

were due to the lack of ventilation in the nose. When compressed air was 

blown into the nose of these patients, the surface temperature immediately 

dropped 5°-8°C. A similar change in mucosal temperature was observed by 

Krabill (1979) when normal nasal breathing was resumed in the sheep after 

a prolonged interruption. In addition, Caputa and Cabanac (1978) and 

Cabanac and Caputa (1979) believed that selective cooling of the human 

brain, as a protection against overheating, can occur in a similar manner. 
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as that proposée by Magilton and Swift (1967, 1968, 1969), for carotid 

rete species. 

Effects of Hypothalamic Temperature 

Temperature changes around the hypothalamus, particularly the pre-

op tic/anterior hypothalamic region, have been demonstrated to elicit 

thermoregulatory responses of the body. Studies in the rat, rabbit, dog, 

cat, ox, sheep, goat, pig, monkey, and baboon showed that direct heating 

of the hypothalamus, via implanted thermodes, caused increased respira­

tory rate and vasodilatation even in a cold environment, while its direct 

cooling caused decreased respiratory rate and vasoconstriction even in a 

hot environment (Magoun et al., 1938; Beaton et al., 1941; Strom, 1950; 

Forster and Ferguson, 1952; Andersson et al., 1956; Andersson and 

Persson, 1957; Freeman and Davis, 1959; Hammel et al., 1960; Findlay and 

Ingram, 1961; Ingram and Whittow, 1961, 1962a,b, 1963; Andersson et al., 

1962d; Nakayama et al., 1963; Hammel et al., 1963; Euler, 1964; Satinoff, 

1964; Findlay and Whittow, 1966; Baldwin and Ingram, 1966, 1968; Whittow, 

1968; Guieu and Hardy, 1970a; Gale et al., 1970; Mackrey and Bligh, 1971; 

Ingram and Legge, 1971; Kluger et al., 1973; Young et al., 1976). Sup­

port for the hypothesis that the preoptic/anterior hypothalamic area 

controls thermoregulation was provided by experiments in rats and rabbits 

in which lesions of this area destroyed the adaptive response to body 

cooling (Isenschmid and Schnitzler, 1914; Bazett and Penfield, 1922; 

Bazett et al., 1933; Pinkston et al., 1934; Frasier et al., 1936; Ranson 

and Ingram, 1935; Ranson et al., 1937; Clark et al., 1939; Ranson, 1940). 
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Also, electricaL stimulation of this area in the ox (Ingram and Whittow, 

1962a) and goat (Andersson et al., 1956) caused increased panting and 

vasodilatation. Further, single unit activity studies have shown that 

some neurons (warm receptors) in this area increased their firing rates 

during direct increased hypothalamic temperature, and others (cold 

receptors) responded to direct decreased hypothalamic cooling (Freeman 

and Davis, 1959; Nakayama et al., 1963; Hardy et al., 1964; Wit and Wang, 

1968; Nakayama and Hardy, 1969; Gale et al., 1970; Guieu and Hardy, 

1970a,b; Hellon, 1970; Jacobson and Squires, 1970; Boulant and Bignall, 

1973). In addition, Bligh (1957a, 1966), Hayward et al. (1966), Baker 

and Hayward (1968c), Hayward and Baker (1968b), and Gale et al. (1970) 

contend that since the blood conveys thermal Information about the body 

core to the brain, the thermoregulation of this area is controlled by 

the cerebral blood temperature. This hypothesis is supported by inves­

tigations in the rabbit (Kahn, 1904), dog (Moorhouse, 1911), cat 

(Forster and Ferguson, 1952; Newman and Wolstencroft, 1960), and sheep 

(Bligh, 1963a,b; Baldwin and Yates, 1977) which demonstrated that heating 

or cooling the carotid blood supply to the brain would elicit the same 

thermoregulatory responses as seen under hyperthermic and hypothermic 

conditions, respectively. 

Besides regulating brain temperature, the countercurrent heat 

exchange mechanism within the cavernous sinus may also influence endo­

crine functions of the hypothalamic-pituitary axis. Environmental 

temperature changes have been shown to alter the plasma levels of some 

hormones. For example, in the bovine, serum prolactin levels (Koprowski 
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and Tucker, 1973; Wettermann and Tucker, 1976) are directly proportional 

to environmental temperature variations, while plasma progestins and 

corticosteroid levels (Stott and Wiersma, 1973), are inversely propor­

tional to temperature changes. Roussel et al. (1977) believed that the 

higher levels of progesterone in the bovine, during hot weather, was the 

result of environmental temperature alone. In addition, there is evidence 

that the temperature sensitive neurons in the preoptic/anterior hypo­

thalamic area exert some control over pituitary hormone release (D'Angelo, 

1960; Andersson et al., 1963; Chowers et al., 1964, 1966; Sundsten and 

Matheson, 1966; Gale et al., 1970; Proppe and Gale, 1970). For instance, 

in the rat (Itoh, 1954), dog (Szczepanska-Sadowska, 1974), and pig 

(Forsling et al., 1975), heating of the preoptic/anterior hypothalamic 

area increased the release of antidiuretic hormone (ADH), while in the 

monkey (Hayward and Baker, 1968a), cooling of this area caused an inhibi­

tion of ADH release and diuresis. Bader et al. (1952) and Bass and 

Henschel (1956) attributed diuresis during cold exposure in humans to 

inhibition of ADH release from the neurohypophysis. Cooling of the 

anterior hypothalamus resulted in increased secretions of ACTH in the dog 

(Chowers et al., 1964, 1966) and ox (Gale et al., 1970; Calvert et al., 

1972). 

Factors Influencing TSH Secretion 

The best known mechanism controlling the secretion of thyrotropin 

(TSH) is the negative feedback mechanism involving circulating blood 

levels of thyroid hormone (Turner and Bagnara, 1976). When there is a 
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metabolic need "or thyroid hormone or when circulating levels of 

tetraiodothyronine (Thyroxine or T^) and/or triiodothyronine (T^) are low, 

the hypothalamus is stimulated to secrete thyrotrophic releasing hormone 

(TRH), which reaches the thyrotrophic cells within the anterior pituitary 

via the hypophyseoportal system and stimulates the release of TSH. 

Thyrotropin, in turn, reaches the thyroid gland and stimulates production, 

as well as, release of thyroid hormone (T^ and T^) into the blood. As 

the circulating levels of T^ and increase, there is a feedback inhibi­

tion on TSH release. However, the following aspects of this mechanism 

has not been settled; 1) whether T^ or T^ is the inhibiting agent, 2) the 

exact method of this inhibition, and 3) the exact location of the inhibi­

tion. Radioactive T_ and T, have been found to collect in both the 
3 4 

paraventricular region of the hypothalamus, as well as, in the neuro- and 

adenohypophysis (Turner and Bagnara, 1976). Thus, at present, it can 

only be assumed that TSH secretion is regulated at both the pituitary and 

hypothalamic levels via this mechanism. 

Several factors have been shown to modify the above secretion 

sequence. For exanple, physical and emotional stresses are known to 

depress secretion of TSH (Brown-Grant and Pethes, 1960; Falconer, 1967; 

Leppaluoto et al., 1974a; Hefco et al., 1975; Dohler et al., 1977a,b). 

However, the exact method by which this inhibition occurs is not fully 

known. There is evidence that adrenal corticotrophic hormone (ACTE) may 

be involved in this inhibition, since stress increases the anterior 

pituitary secretion of ACTH and the adrenal corticosteroids, especially 

Cortisol, is known to inhibit thyroid activity (Brown-Grant and Pethes, 
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1960; MacFarlanr, 1963). 

Another factor influencing TSH secretion is environmental temperature. 

The secretion of thyroid hormone has been observed to increase and 

decrease in rats exposed to cold and hot environments, respectively 

(Brown-Grant, 1956; Hsieh et al., 1957; Johnson and Ragsdale, 1960; 

MacFarlane, 1963; Reichlin et al., 1972; Mueller et al., 1974). Although 

the exact mechanism by which environmental temperatures influence TSH 

secretion has not been fully elucidated, it is believed to occur via a 

nervous reflex through the hypothalamus, since local preoptic cooling or 

heating have been demonstrated to increase or decrease, respectively, the 

secretion of TSH in the rat (McClure and Reichlin, 1964; Reichlin, 1964; 

Leppaluoto et al., 1974a), goat (Andersson et al., 1962a,b,c, 1963), and 

baboon (Sundèten and Matheson, 1966; Gale et al., 1970). Andersson et 

al. (1963) hypothesized that the control of TSH secretion by the "Heat 

Loss Center" in the preoptic/anterior hypothalamic region is via "warm 

detectors" which exert a certain inhibitory tone, the strength of which 

seems to increase in proportion to the rise ia the temperature of the 

center (i.e., in proportion to the degree of activation of the central 

"warm detectors") and that cooling this area proportionally decreases the 

inhibition. They also thought that probably other hormonal cold defense 

mechanisms are also inhibited in a similar manner. More recent evidence 

indicates that the response of the pituitary thyrotropic cells to cold 

stimuli may be mediated by the release of norepinephrine from a-adrenergic 

hypothalamic neurons, which activate release of TRH and this, in turn, 

stimulates secretion of TSH (Tuomisto et al., 1975; Krulich et al., 1977). 
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These studies showed that the cold-Induced increase of TSH secretion in 

the rat could be prevented by either norepinephrine depletors or a-

receptor blockade. The dopaminergic system may be inhibitory to TSH 

secretion; however, there were no significant changes in serum TSH levels 

following dopamine receptor blockade, and neither &-dopa nor apomorphine 

had any inhibitory effect on the TSH response to TRH at doses that would 

inhibit the cold-response (Tuomisto et al., 1975; Krulich et al., 1977). 

It could be possible that the dopaminergic system is activated by 

increasing temperatures; however, this aspect has not been investigated. 
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MATERIALS AND METHODS 

Surgical Procedures and Experimental Design 

Ten Rambouillet ewes, aged one to three years, were used in this 

investigation (Table 2, p. 38). Seven days prior to experimentation, 

each animal was housed in an animal holding room, sheared, and accustomed 

to the handling necessary for the experimentation (i.e., room temperature, 

rectal temperature, heart rate, and respiratory rate were taken four times 

daily). During the course of the experiment, except for 24 hours prior to 

each surgical procedure, the animals were allowed free access to food and 

water. 

After the animals were accustomed to handling, an indwelling venous 

catheter, used for withdrawing blood samples, was chronically implanted 

into the right external jugular vein of each ewe at approximately the 

level of the fourth cervical vertebra. The venous catheter consisted of 

1 2 
a 61 cm long polyvinyl tubing (0.044" I.D. , 0.065" O.D. ) inserted 

through a silastic cannula (0.062" I.D., 0.125" O.D.), leaving 15 cm 

beyond each end of the silastic cannula. The silastic cannula elimi­

nated kinking of the polyvinyl catheter, overcoming the impediment 

of blood withdrawal. A small knob of silastic cement, used for anchoring 

the catheter into the external jugular vein, was fashioned onto one end 

of the silastic cannula. The animal was anesthetized with fluothane 

^I.D. = Inner diameter. 

2 
O.D. = Outer diameter. 
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(halothane, U.S P.) and the right external jugular vein was exposed by an 

8.0 cm incision along the right jugular furrow, at the level of the 

fourth cervical vertebra. The venous catheter was filled with heparinized 

saline solution (400 units/ml) and then it was inserted into the external 

jugular vein, to the level of the silastic knob (approximately 15 cm), 

along the dorsal border of the vein. The catheter was held in place by 

passing 4-0 braided silk first through the adventitia of the jugular vein 

and surrounding fascia, and then through and around the silastic knob. 

The catheter was then exteriorized through a skin incision at the pre-

scapular region and both incisions were closed with No. 1 surgical suture. 

An 18 gauge needle, fitted with luer-lock plug, was inserted into the 

exteriorized end of the catheter. Blood samples were withdrawn from the 

catheter by connecting a 10 ml syringe to the 18 gauge needle. 

Three days post-jugular surgery, 10 ml blood samples and physiologi­

cal data (i.e., room temperature, rectal temperature, heart rate, and 

respiratory rate) were obtained for the "Normal Phase," following the 

schedule in Table 1. The patency of the jugular catheter was maintained 

with heparin (10,000 units/ml) between samplings. 

After the "Normal Phase" of blood samples was completed (Table 1), 

an upper respiratory bypass cannula (Figure 1) was chronically implanted 

into the trachea of each animal. The body (E) and cranial (C) and 

caudal (D) tubal extensions (modified for use in the sheep after Kluger 

and D'Alecy, 1975) were carved from a block of teflon. The Inserts (A 

and B) were made of stainless steel and the cap (F) was made of plastic. 

The surgical technique for implantation of the upper respiratory bypass 

cannula was as follows: 
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Table 1. Schedule of blood sampling and physiological data^ 

Day of 
sampling 

Time of day Day of 
sampling 8 a.m. 12 p.m. 4 p.m. 8 p.m. 

1st 1^ 1 1 1 

2nd 1 1 1 1 

3rd 1 1 1 1 

4th 2 2 2 2 

5 th 2 2 2 2 

6th 2 2 2 2 

7 th 2 (zero time 3 3 3 
bypass) 

8th 3 3 3 3 

9th 3 3 3 3 

10th 3 (zero time 4 4 4 
post-bypass) 

11th 4 4 4 4 

12 th 4 4 4 4 

13 th 4 - - -

^The physiological data of room temperature, rectal temperature, 
heart rate, and respiratory rate were recorded prior to each blood sampling. 

^The numbers correspond to phases of experiment (i.e., 1 = normal, 
2 = pre-bypass, 3 = bypass, and 4 = post-bypass). 

1. Following anesthesia with fluothane and necessary preparations 

of the surgical field, the trachea was exposed approximately 4.0 cm caudal 

to the larynx by a 15 cm incision along the ventral midline of the neck. 



Figure 1. Upper respiratory (tracheal) bypass cannula (modified from 
Kluger and D'Alecy, 1975) 

Solid arrows denote bypassed breathing with insert (A) ; 
broken arrows denote normal breathing with insert (B). 
(Manufactured by the work shop of the Engineering Research 
Institute, Iowa State University, Ames, Iowa). 

A - Bypass insert 
B - Flow-through insert 
C - Cranial tubal extension 
D - Caudal tubal extension 
E - Body 
F - Cap 
G - Leur lock needle with cap 
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2. The tr .chea was transected and the cranial and caudal tubal 

extensions of the cannula were inserted into the trachea through the cut 

ends of the cranial and caudal segments, respectively, of the trachea. A 

double loop of No. 2 surgical silk was fastened around the trachea near 

each cut end, providing an airtight seal between the trachea and the 

tubal extensions of the cannula. 

3. To prevent any possible slippage of the trachea from the tubal 

extensions of the cannula, supporting sutures were placed through the 

lateral sides of the trachea and the ends of the trachea were drawn 

towards the body of the cannula (Figure 2). 

4. The surgical wound was then closed with No. 1 surgical silk, 

leaving the body of the cannula extending beyond the surface of the skin 

(Figure 3). At least once a day, the inserts (A or B, depending on the 

period of the experiment) were removed and the cannula cleaned of mucus. 

Three days post-tracheal surgery, 10 ml blood samples and physio­

logical data were obtained for the "Pre-Bypass Phase" following the 

schedule in Table 1. The "Bypass Phase" followed, beginning with the 

collection of a blood sample and recording of the physiological data 

designated "Zero Time Bypass" (Table 1). Immediately after the "Zero 

Time Bypass" data were collected, the flow-through insert (B) of the 

upper respiratory bypass cannula (Figure 1) was replaced by the bypass 

insert (A). Normal respired airflow through the nasal cavity was then 

interrupted. The animals remained on the bypass breathing for 72 hours, 

during which time blood samples and physiological data were obtained 

following the schedule in Table 1. 



Figure 2. Surgical implantation of the upper respiratory bypass 
cannula into the trachea of a sheep 

A - Upper respiratory bypass cannula 
B - Caudal end of trachea 
C - Cranial end of trachea 
D - Double loop of suture for airtight seal between 

trachea and cannula 
E - Supporting suture to prevent slippage of trachea 

from cannula 

Figure 3. Chronically implanted upper respiratory bypass cannula in 
situ 

A - Upper respiratory bypass cannula 
B - Interrupted cutaneous sutures 
C - Purse-string cutaneous sutures 
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The animals weri finally returned to normal nasal breathing, after the 

"Zero Time Post-Bypass" blood sample and physiological data were obtained 

(Table 1), by replacing the flow-through insert (B) into the upper 

respiratory bypass cannula (Figure 1). For the next 72 hours, blood 

samples and physiological data were obtained for the "Post-Bypass Phase," 

following the schedule in Table 1. 

Thus, the experimental design of this investigation consisted of 

four periods of blood samplings and physiological data recordings; 

1. Normal phase - to determine the normal serum levels of TSH in 

the sheep under investigation. 

2. Pre-Bypass phase - to determine if surgical stress affected 

the serum levels of TSH. 

3. Bypass phase - to determine if interruption in normal nasal 

breathing, which has been shown to increase brain temperature in sheep 

(Krabill, 1979), will affect the serum levels of TSH. 

4. Post-Bypass phase - to determine if resumption of normal nasal 

breathing will restore the TSH levels of the "bypass phase" to "pre-

bypass" levels. 

All blood samples were stored at 4°C for 24 hours before serum was 

collected by centrifugation. The serum samples were then stored at -20°C 

until assayed for TSH content. 
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Pr icedure for Radioimmunoassay of Ovine TSH 

A. Preparation of Anti-Ovine TSH Serum: 

1. Reagents: 

a. Anti-Ovine TSH Serura^ 

b. Phosphate buffered saline-Ethylenedinitrilotetraacetic 

acid (0.05M) solution (PBS-EDTA), pH 7.0—0.15M NaCl, 

C.OIM sodium phosphate, with 0.01% thiomersol (or any 

antibacterial agent), EDTA. 

c. Normal rabbit serum (NRS) 

2 
d. Ovine LH and FSH 

2. Procedure: 

a. Full strength antiserum was diluted 1:400 in 0.05M PBS-

EDTA, pH 7.0. 

b. NRS was also diluted to 1:400 in 0.05M PBS-EDTA, pH 7.0. 

c. Anti-ovine TSH serum was then taken to a working 

dilution of 1:100,000 using 1:400 NRS, 

d. After dilution to 1:100,000, the antiserum was pre-

absorbed with ovine LH and FSH: 

i. added 50 ng of LH and 50 ng of FHS per ml of 

diluted antiserum. 

ii. Incubated for 24 hours at 4°C with stirring. 

^Provided by Dr. S. L. Davis, Department of Animal Industry, 
University of Idaho, Moscow, Idaho 83843. 

2 
A gift from the National Institute of Arthritis, Metabolism and 

Digestive Diseases, a division of the National Institute of Health. 
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e. Appropriate aliquots (50-100ml) were then snap frozen in 

dry ice-2-methyl butane and stored at -20*C until use. 

B. Preparation of Reference Standard Hormone: 

1. Reagents: 

a. NIH-TSH^ 

b. PBS-1% Bovine Serum Albumin (BSA), pH 7.0. 

2. Procedure: 

a. Weighed approximately 50-100ug of NIH-TSH on a Cahn 

micro electro-balance. 

b. Dissolved in PBS-1%BSA to a concentration of lOOug/ml, 

then accurately diluted to lOOng/ml in PBS-1%BSA, pH 

7.0. 

c. Aliquots (3.0ml) were quick frozen and stored at 

-20°C until use. 

C. Preparation of Separation Column: 

1. Reagents: 

a. Small column (0.8 x 20cm). 

b. Biogel P-60 (100-200 mesh). 

c. PBS-1%BSA, pH 7.0. 

2. Procedure; 

a. Packed column with 12cm of Biogel P-60 in cold room 

(4°C). 

b. Rinsed thoroughly with PBS-1%BSA. 

^A gift from the National Institute of Arthritis, Metabolism, and 
Digestive Diseases, a division of the National Institute of Health. 
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D. Radioiodination of Purified Bovine TSH: 

1. Reagents: 

a. Purified Bovine TSH^ 

b. Phosphate buffered saline (PBS), pH 7.5—0.15M NaCl, 

G.GIM sodium phosphate, with 0.01% thiomersol (or any 

antibacterial agent). 

c. 0.5M phosphate buffer (pH 7.5) — one part potassium 

phosphate monobasic to nine parts sodium phosphate 

dibasic. 

d. 0.05M phosphate buffer (pH 7.5). 

e. Carrier free 1-125. 

f. Chloramine T solution, pH 7.5—lug/ul in 0.05M 

phosphate buffer. 

g. Sodium metabisulfite, pH 7.5—2.5ug/ul in 0.05M 

phosphate buffer. 

h. Transfer solution, pH 7.5—lOmg potassium iodide/ml 

of Û.Û5M phosphate buffer containing 16% sucrose (w/v). 

i. Bovine serum. 

j. Rinse solution, pH 7.5—lOmg potassium iodide/ml of 

0.05M phosphate buffer containing 8% sucrose (w/v). 

k. The PBS and PBS-1% BSA were stored at 4°C until use. 

Snap frozen aliquots of 0.5M phosphate buffer, rinse 

Provided by Dr. J. G. Pierce, Department of Biological Chemistry, 
U.C.L.A. School of Medicine, Los Angeles, California 90024. 
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solution and transfer solution were thawed for use on 

day of iodination. Chloramine T and sodium metabi-

sulfite solutions were made fresh and used within 2-3 

hours of scheduled iodination. 

2. Procedure: 

a. Added 25ul of 0.5M phosphate buffer (pH 7.5) to a 1 ml 

serum vial containing 2.5ug (lug/ul in PBS, pH 7.5) of 

purified bovine TSH and mixed. 

b. Added O.SmCi of carrier free 1-125. 

c. Added 15ul Chloramine T solution and agitated for 60 

seconds. 

d. Stopped reaction by addition of 50ul of sodium 

metabisulfite solution and mixed. 

e. Added lOOul transfer solution, mixed and transferred 

contents of vial to the column of Biogel P-60. 

f. Added lOOul of bovine serum to vial, mixed and 

transferred the contents to the column. 

g. Added 70ul of rinse solution to the vial, mixed and 

transferred contents to the column. 

h. Eluted column with 0.05M phosphate buffer, pH 7.5. 

i. Collected 0.5ml fractions of elute into tubes containing 

0.5ml of PBS-1%BSA, pH 7.0. The iodinated TSH was 

eluted in fractions 3-10 and free 1-125 was eluted in 

fractions 11-20. 
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E. Assay < f Serum Samples : 

1. Reagents 

a. PBS-1%BSA, pH 7.0 

b. Reference Standard Hormone (NIH-TSH) 

c. Serum samples 

d. Anti-ovine TSH serum (1:100,000) 

e. lodinated bovine TSH 

f. Antirabbit gamma globulin (second antibody) 

g- PBS, pH 7.0 

h. NRS (1:400) 

2. Procedure: 

a. Assays were conducted in 10 x 75inni glass disposable 

culture tubes. 

b. All reagents and assay tubes were kept on ice while 

setting up the assay. 

c. Reference standard TSH was serially diluted to the 

following concentrations/200ul: 20ng, lOng, 5ng, 

2.5ng, 1.25ng, 0.625ng, 0.3125ng, 0.15625ng, and 

0.078125ng. 

d. 200ul of serially diluted reference standard TSH was 

added to the appropriate duplicate standard tubes. 

Duplicate zero tubes received 200ul of PBS-1%BSA, pH 7.0 

only. Three duplicate nonspecific binding tubes 

received 200ul (20ng) of reference standard TSH. 
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e. 300ul of PBS-1%BSA was added to all standard zero, and 

nonspecific binding tubes. 

f. 300ul of PBS-1%BSA was added to the remaining assay 

tubes and then 200ul of the experimental serum samples 

was added to these remaining assay tubes. 

g. 200ul of anti-ovine TSH serum (1:100,000) was added to 

all tubes except the nonspecific binding tubes which 

received 200ul of 1:400 NRS instead. 

h. All tubes were vortexed and incubated at 4®C for 24 

hours. 

i. 1-Oul of iodinated bovine TSH (approximately 45,000 cmp/ 

lOOul) was added to all tubes. Two total count tubes, 

containing only lOOul of iodinated bovine TSH were 

added to the end of each assay set of tubes. 

j. All tubes were vortexed and incubated at 4°C for 24 

hours. 

k. 200ul of antirabbit gamma globulin (second antibody) was 

added to each tube, except total count tubes. 

1. All tubes were vortexed and incubated at 4°C for 72 

hours. 

m. 2.5ml of PBS, pH 7.0 was added to all but total count 

tubes. 

n. All tubes, except total count tubes, were centrifuged 

at 2500-3000 r.p.m. for 30 min. at 4°C. 
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0. Supernatant was decanted in all but total count tubes, 

p. All tubes were counted in a Beckman, Biogamma II 

counting spectrometer. 

F. Assay Specificity Tests: 

1. Reagents: 

a. PBS-1%BSA, pH 7.0 

b. Reference Standard Hormone (NIH-TSH) 

c. Hypophysectomized Sheep Serum^ 

d. Anti-ovine TSH serum (1:100,000) 

e. lodinated bovine TSH 

f. Antirabbit gamma globulin 

g. PBS, pH 7.0 

h. NRS (1:400) 

1. An experimental serum sample whose TSH level has 

already been determined. 

2. Procedure: 

a. A duplicate set of standard, zero, and nonspecific 

binding tubes was set up, as for the regular assay 

(steps a through e of Procedures under Assay of Serum 

Samples) 

b. To a set of 10 duplicate (20 tubes) recovery tubes, 

200ul of serially diluted standard TSH (20ng-0.078125ng) 

^Provided by Dr. C. Kaltenbach, Department of Animal Science, 
University of Wyoming, Box 3354 University Station, Laramie, Wyoming 
82070. 
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was then added to respective tubes. The duplicate zero 

tubes of this set received 200ul of PBS—1%BSA instead of 

standard hormone. 

200ul of hypophysectomized sheep serum was then added to 

each recovery tube. This was followed with the addition 

of lOOul of PBS-1%BSA to each recovery tube. 

To a set of 5 duplicate (10 tubes) parallel tubes, the 

following amounts of PBS-1%BSA were added to respective 

pairs: 200ul, 300ul, 400ul, 450ul, SOOul. 

To this set of parallel tubes, the following amounts of 

an experimental serum sample were added to respective 

tubes; SOOul, 200ul, lOOul, 50ul, Oui (The volume in 

each parallel tube was now SOOul). 

The remainder of the procedure for all tubes of the 

Assay Specificity Test (viz., Standard, Zero, Nonspecific 

binding. Recovery, and Parallel tubes) was the same as 

steps g through p of Procedures under Assay of Serum 

Samples. 
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RESULTS 

The experiment consisted of recording the physiological data of room 

temperature (RmT), rectal temperature (RT), respiratory rate (RR), heart 

rate (HR), and the collection of 10 ml blood samples for radioimmunoassay 

(RIA) of serum levels of TSH from 10 Rambouillet ewes during four differ­

ent phases: Phase 1 (Normal Phase) represented data collected from the 

animals before tracheal surgery; Phase 2 (Pre-Bypass Phase) represented 

data collected after tracheal surgery but before normal nasal breathing 

was interrupted; Phase 3 (Bypass Phase) represented data collected during 

interruption of normal nasal breathing (animals were placed on bypass); 

and Phase 4 (Post-Bypass Phase) represented data collected after the 

animals were returned to normal nasal breathing. 

The recorded physiological data (RmT, RT, RR, HR) and serum levels 

of TSH for the entire experiment (i.e., during Phase 1,2,3,4) were 

statistically analyzed for variations: 

a. between individual animals 

b. between the four phases of the experiment 

c. between the average of all data and times of sample collection 

(i.e., 8 a.m., 12 noon, 4 p.m., and 8 p.m.) 

d. between the average of all data of the three phases of normal 

nasal breathing (Phases 1,2,4) and bypassed breathing (Phase 3) 

and times of sample collection (8 a.m., 12 noon, 4 p.m., and 

8 p.m.) 

e. between serum levels of TSH and all data. 
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Table 2 lis _s the averaged raw values of all data from each ewe 

compiled by time during the four phases of the experiment. Each value is 

the mean of three observations, except for Phase 2, which is the mean of 

four observations, due to the fact that Zero-time bypass (Table 1) was 

taken just prior to placing the animals on bypass breathing. Table 3 

gives the total means of all data from Table 2 by time within the four 

phases of the experiment. Each value is the mean of 30 observations, 

except for Phase 2, which is the mean of 40 observations. The total phase 

means are listed at the bottom of the table. Figures 4 and 5 are histo­

grams graphically depicting the TSH values presented in Table 3. Figure 

4 demonstrates that the TSH serum levels between Phases 1 and 2 (3.26 and 

3.25 ng/ml, respectively) were essentially the same. However, there was 

an increase in TSH levels during Phase 3 (3.36 ng/ml), which subsequently 

decreased during Phase 4 (3.19 ng/ml). When the three phases of normal 

nasal breathing (Phases 1, 2, and 4) were averaged together and compared 

against Phase 3, an increase of 0.13 ng/ml (4.02%) was observed in TSH 

serum levels when the animals were on bypassed breathing. Figure 5 

demonstrates that the serum levels of TSH between Phases 1 and 2 did not 

change over the time of sampling. The serum levels of TSH during Phase 3 

were observably higher than the other three phases at the 8 a.m. and 12 

noon samplings, however, at the 4 p.m. and 8 p.m. samplings, the TSH 

serum levels during Phase 3 were approximately the same or slightly lower 

than the other three phases. When Phases 1, 2, and 4 were averaged 

together and compared against Phase 3, increases of 0.27 ng/ml (8.83%) 



Table 2. Mean data of ewes by time within phases of experiment 

0) 

1 
c 

(0 
N 

8 a.m. 

Phase 1: NORMAL 

12 noon 

1 1 1 
RR HR RT RmT TSH RR HR RT RmT TSH 

CO 1 
51 1 23.3 118.0 102.8 60.0 2.30 32.7 120.0 102.4 61.0 2.72 

53 1 24.0 126.7 103.0 59.7 2.42 22.0 105.3 102.9 60.7 2.50 

75 2 24.7 90.7 103.0 61.0 4.28 26.0 93.3 104.7 61.0 4.15 

76 3 32.7 97.3 102.4 57.7 3.28 40.3 102.0 104.0 59.0 3.37 

105 1 22.0 98.0 101.4 58.0 3.90 22.7 79.3 101.6 59.7 3.70 

113 2 32.0 82.7 102.1 61.0 3.13 52.0 82.7 102.8 61.0 3.05 

146 1 24.0 110.0 102.0 60.0 2.62 25.3 115.3 102.7 61.0 2.78 

150 2 24.0 88.7 103.2 57.7 3.47 26.0 86.0 104.1 59.0 3.38 

185 1 21,3 136.7 104.2 59.7 2.98 31.3 144.0 104.6 60.7 3.23 

197 1 26.0 132.7 103.5 60.0 2.63 26.0 133.3 103.2 61.0 3.58 



39 

RR HR 

4 p.m. 

RT RmT TSH RR HR 

8 p.m. 

RT BmT TSH 

30.0 114.7 

21.3 117.3 

24.0 86.7 

39.3 94.0 

25.3 92.7 

25.3 86.7 

20.7 100.0 

28.0 92.0 

20.7 126.7 

25.3 128.0 

102.0 61.0 

103.2 61.3 

103.0 61.7 

103.9 60.3 

101.7 59.7 

102.0 61.7 

103.0 61.0 

104.7 60.3 

102.8 61.3 

103.9 61.0 

2.67 30.0 

3.27 20.7 

5.27 24.7 

3.02 38.0 

4.00 25.3 

3.20 36.0 

2.67 23.3 

3.07 28.7 

3.38 21.3 

3.43 31.3 

112.0 102.9 

108.7 103.8 

99.3 103.0 

86.0 103.5 

82.7 101.6 

91.3 102.7 

112.7 103.4 

87.3 105.1 

128.7 104.3 

135.3 103.9 

61.0 2.75 

61.3 2.80 

61.7 4.60 

61.0 3.17 

59.7 4.07 

61.7 3.22 

61.0 2.83 

61.0 2.58 

61.3 3.38 

61.0 3.38 



Table 2 (Continued) 

M 
eu 

2 
Phase 2: PRE--BYPASS 

G 

S-

1 

cd 

5 

1 
KR HR 

8 a.m. 

RT RmT TSH RR HR 

12 noon 

RT RmT TSH 

51 1 20.0 147.5 103.8 63.8 2.57 21.3 138.0 103.7 63.3 2.98 

53 1 28.0 136.0 103.2 60.8 3.38 28.0 135.3 103.3 61.0 2.45 

75 2 16.5 78.5 102.8 62.3 3.95 18.7 96.0 103.7 63.7 4.10 

76 3 26.5 79.5 103.8 63.3 2.93 24.0 84.0 103.8 63.0 3.27 

105 1 26.0 107.5 104.4 63.5 3.48 24.0 99.3 104.6 66.3 4.52 

113 2 19.0 86.5 103.2 62.3 3.05 20.6 92.7 103.0 63.7 2.92 

146 1 24.5 132.5 105.0 63.8 2.84 28.7 123.3 104.2 63.3 2.83 

150 2 28.0 78.5 103.6 63.3 3.24 28.7 80.0 103.4 63.0 3.27 

185 1 23.0 135.5 103.1 60.8 3.24 22.0 129.3 104.6 61.0 2.70 

197 1 20.0 144.5 103.9 63.8 2.07 22.7 133.3 103.3 63.3 3.00 
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RR HR 

4 p.m. 

RT RmT TSH RR HR 

8 p.m. 

RT RmT TSH 

22.7 138.7 

25.3 132.7 

18.0 92.7 

24.7 80.7 

27.3 104.0 

20.7 88.0 

23.3 112.0 

22.7 76.7 

24.7 137.3 

21.3 132.0 

103.1 64.3 

103.7 62.7 

103.4 64.3 

103.4 62.7 

104.7 68.0 

102.6 64.3 

104.1 64.3 

103.1 62.7 

104.2 62.7 

103.4 64.3 

3.02 21.3 

3.45 25.3 

4.23 20.0 

3.07 22.7 

4.80 28.7 

3.17 28.0 

2.53 21.3 

3.25 28.0 

3.58 26.0 

2.63 22.7 

140.0 103.3 

125.3 103.9 

99.3 104.7 

85.3 103.6 

100.7 104.8 

100.0 103.2 

117.3 103.3 

86.7 103.0 

144.7 104.4 

132.7 104.5 

63. 3 3.23 

62. 7 3.57 

66. 3 4.15 

62. 7 3.75 

68. 0 4.20 

66. 3 3.12 

63. 3 3.12 

62. 7 3.30 

62. 7 3.22 

63. 3 2.34 



Table 2 (Continued) 

k 
m 

*1 
(0 
w 

Phase 3: BYPASS 

c 

w 

(0 
(U 
sb 
(U 

< 
RR HR 

8 a.m. 

RT RmT TSH RR HR 

12 noon 

RT RmT TSH 

51 1 14.7 150.3 102.8 61.0 2.45 19.3 140.7 103.9 65.3 2.55 

53 1 17.3 144.7 103.7 58.7 2.80 20.7 131.3 104.1 58.7 2.52 

75 2 16.0 93.3 101.8 61.7 3.92 70.0 94.7 102.7 64.0 4.42 

76 3 18.7 109.3 104.2 58.0 4.00 18.0 97.7 104.0 57.7 4.55 

105 1 22.0 87.3 103.0 64.0 4.52 20.7 104.0 103.0 66.7 3.75 

113 2 18.0 78.7 101.7 61.7 3.15 20.0 93.3 102.0 64.0 3.48 

146 1 18.0 139.3 103.7 61.0 3.02 32.0 129.3 104.4 65.3 2.85 

150 2 25.3 72.0 102.9 58.0 3.50 25.3 71.3 102.8 57.6 3.32 

185 1 16.7 142.7 102.3 58.7 3.47 19.3 121.3 103.5 58.7 3.48 

197 1 16.7 154.0 104.0 61.0 2.89 20.0 143.3 103.3 65.3 4.02 
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4 p.m. 8 p.m. 

RR HR RT RmT TSH RR HR RT RmT TSH 

18.0 135.3 103.0 67.0 2.58 15.3 139.3 103.2 66.0 2.62 

17.3 134.7 103.3 58.7 3.95 17.3 134.0 104.4 58.7 2.62 

60.7 93.3 102.8 64.7 3.92 16.7 94.0 103.3 65.3 4.28 

19.3 101.3 104.4 59.7 3.17 17.3 101.3 103.9 60.0 2.70 

16.7 89.3 102.3 66.7 2.83 19.3 86.7 102.1 66.0 3.58 

20.7 92.7 101.8 64.7 3.37 33.3 98.0 102.7 65.3 3.25 

20.7 128.0 103.8 67.0 3.30 24.7 138.7 103.6 66.0 3.02 

21.3 91.3 102.6 59.7 3.30 20.0 92.0 103.2 60.0 3.30 

14.0 128.7 101.8 58.7 3.17 18.7 128.0 102.9 58.7 3.85 

18.7 146.0 102.9 67.0 3.63 18.7 144.7 102.7 66.0 3.42 



Table 2 (Continued) 

2 
Phase 4: POST-BYPASS 

a 

î 
CO 
(U 

Z) 

1 KR HR 

8 a.m. 

RT RmT TSH RR HR 

12 noon 

RT RmT TSH 

51 1 20.0 136. 0 102.7 62.0 2.58 20.7 136.0 102.6 63.7 2.75 

53 1 18.7 126. 0 102.9 58.7 3.02 19.3 120.7 103.8 59.3 3.10 

75 2 18.7 122. 0 102.3 58.0 3.98 28.7 112.0 103.7 58.7 4.28 

76 3 22.7 106. 7 105.1 60.0 2.83 25.3 108.7 105.1 61.7 3.37 

105 1 24.0 84. 7 103.6 64.7 2.70 24.0 79.3 103.0 68.3 2.80 

113 2 61.3 115. 3 102.7 58.0 3.05 34.0 100.0 102.4 58.7 3.27 

146 1 22.0 130. 0 104.1 62.0 3.10 24.0 141.3 104.0 63.7 3.20 

150 2 30.7 81. 3 103.2 60.0 3.30 38.0 88.0 103.2 61.7 3.30 

185 1 20.0 124. 7 102.6 58.7 4.32 20.0 132.7 102.9 59.3 3.37 

197 1 26.0 162. 0 105.6 62.0 2.28 21.3 151.3 103.9 63.7 3.65 
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RR HR 

4 p.m. 

RT RmT TSH RR HR 

8 p.m. 

RT RmT TSH 

19.3 136.0 

19.3 120.7 

20.7 116.7 

27.3 104.7 

24.0 84.7 

37.3 93.3 

22.7 132.7 

30.7 91.3 

19.3 125.3 

22.7 146.7 

102.7 63.7 

103.3 59.3 

102.5 58.7 

104.8 62.0 

103.8 67.7 

102.3 58.7 

103.4 63.7 

102.6 62.0 

102.3 59.3 

104.7 63.7 

2.75 20.7 

2.92 19.3 

4.40 17.3 

3.12 28.0 

2.80 30.0 

3.00 32.7 

2.82 22.7 

3.25 40.0 

3.60 23.3 

2.90 21.3 

138.7 102.9 

124.0 103.2 

106.0 102.7 

108.7 105.0 

85.3 103.7 

97.3 102.4 

140.0 104.1 

86.0 103.3 

128.0 103.2 

153.3 104.2 

64.3 2.75 

60.3 3.33 

59.7 4.22 

64.3 2.73 

67.7 3.27 

59.7 3.12 

64.3 3.07 

64.3 2.87 

60.3 3.75 

64.3 2.85 



Table 3. Total means grouped by time within phases of experiment 

Phase 1 Phase 2 

Time RR HR RT RmT TSH RR HR RT RmT TSH 

8 a.m. 25.4 108.1 102. 8 59.5 3.10 23.2 112. 7 103.7 62.7 3.07 

12 noon 30.4 106.1 103. 3 60.4 3.25 23.9 111. 1 103.8 63.2 3.20 

4 p.m. 26.0 103.9 103. 0 60.9 3.40 23.1 109. 5 103.6 64.0 3.37 

8 p.m. 27.9 104.4 103. 4 61.1 3.28 24.4 113. 2 103.9 64.1 3.40 

Total 
phase 
means 22.4 105.6 103.1 60.5 3.26 23.6 111.7 103.7 63.5 3.25 
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Phase 3 Phase 4 

RR HR RT RmT TSH RR HR RT RmT TSH 

18.3 117.2 

26.5 112.6 

22.7 114.1 

20.1 115.7 

21.9 114.9 

103.0 60.4 

103.4 62.3 

102.9 63.4 

103.2 63.2 

103.1 62.3 

3.37 26.4 

3.49 25.5 

3.32 24.3 

3.26 25.5 

3.36 25.5 

118.9 103.5 

117.0 103.5 

115.2 103.2 

116.7 103.5 

117.0 103.4 

60.4 3.12 

61.9 3.31 

61.9 3.16 

62.9 3.20 

61.8 3.19 



Figure 4. Histogram of serum TSH levels compared over phases of the experiment 

The values over each bar represents the standard deviations. 
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Figure 5. Histogram of serum TSH levels compared by phases over time of sampling 

Values over bars repressents the standard deviations. 
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at 8 a.m., and o 0.24 ng/ml (7.40%) at 12 noon were observed when the 

animals were on bypassed breathing. 

Table 4 gives the F-values and probabilities from the analysis of 

variance (ANOVA) for the total means of all parameters, as listed in the 

last row of Table 3, when compared between individual sheep (SN) and 

between the four phases of the experiment (POE). There was a significant 

difference in heart rate and room temperature between sheep (PR>F = 0.001 

and 0.02, respectively) and the phases of the experiment (PR>F = 0.03 and 

0.01, respectively). The room temperature, averaged over the entire 

experiment, was 0.22°C higher during the bypassed phase as compared to 

the average of the three normal nasal breathing phases. Only at 8 a.m., 

the room temperature during the bypassed period was 0.28°C lower than 

during the three normal nasal breathing phases. 

Table 5 highlights the F-values and probabilities from the analysis 

of variance (ANOVA) of the means of the experimental parameters during 

time as listed in Table 3, when compared between individual sheep (SN) 

and between phases of the experiment (POE). Respiratory rate was 

significantly different (PR>F = 0.06) between phases at 8 a.m. as well as 

it was highly significant between sheep (PR>F = 0.008) and the phases of 

experiment (PR>F = 0.005) at 8 p.m. Heart rate was significantly differ­

ent between sheep during all time periods (PR>F = 0.0001) and it was 

significantly different between the phases of the experiment at 4 p.m. 

(PR>F = 0.03) and at 8 p.m. (PR>F = 0.008). Rectal temperature was 

significantly different between sheep at 8 a.m. (PR>F = 0.05) and 4 p.m. 

(PR>F = 0.04) and it was different between phases of the experiment at 



Table 4. F-values and probabilities from the analysis of variance (ANOVA) of total means by phases 
(Table 3) 

Method of Resp. rate Heart rate Rectal temp. Room temp. TSH 

analysis p PR>F F PR>F F PR>F F PR>F F PR>F 

SN 1.16 0.36 26.87 0.001 2.05 0.07 2.73 0.02 9.29 0.0001 

POE 1.68 0.19 3.51 0.03 1.98 0.14 4.57 0.01 0.60 0.62 



Table 5. F-values and probabilities from the analysis of variance (ANOVA) of total means by time 
(Table 3) 

Time Method of Resp. rate Heart rate Rectal temp. Room temp. TSH 
analysis 

F PR>F F PR>F F PR>F F PR>F F PR>F 

8 a.m. SN 1.44 0.22 15.50 0.0001 2.24 0.05 2.28 0.05 6.41 0.0001 
POE 2,78 0.06 1.50 0.24 2.90 0.05 8.75 0.0003 1.22 0.32 

12 noon SN 0.83 0.60 20.63 0.0001 1.74 0.13 3.21 0.009 6.74 0.0001 

POE 0.76 0.52 2.22 0.11 0.76 0.53 3.23 0.04 1.19 0.33 

4 p.m. SN 0.69 0.71 20.09 0.0001 2.40 0.04 2.73 0.02 4.60 0.0009 
POE 0.32 0.81 3.42 0.03 1.79 0.17 4.45 0.01 0.60 0.62 

8 p.m. SN 3.29 0.008 26.13 0.0001 1.08 0.41 1.70 0.14 6.55 0.0001 
POE 5.45 0.005 4.81 0.008 1.24 0.31 3.38 0.03 0.56 0.64 
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8 a.m. (PR>F = 0.05). The rectal temperature, averaged over the entire 

experiment, was 0.16*C lower during the bypassed phase as compared to the 

average of the three phases of normal nasal breathing. Room temperature 

was significantly different (PR>F = 0.05, 0.009, and 0.02, respectively) 

between sheep at all time periods, except 8 p.m. and it was signifi­

cantly different at all time periods during phases of the experiment 

(PR>F = 0.0003, 0.04, 0.01, and 0.03, respectively). The serum levels 

of TSH was significantly different only between sheep at all times of 

sampling (PR>F = 0.0001, 0.0001, 0.0009, and 0.0001, respectively). 

Table 6 is the F-values and probabilities of the analysis of 

variance comparing the averaged data taken during three normal nasal 

breathing phases (Phases 1, 2, and 4) against the bypassed phase (Phase 

3). It showed that only the respiratory rate was significantly differ­

ent at 8 a.m. (PR>F = 0.002) and 8 p.m. (PR>F = 0.005). The serum levels 

of TSH approached significance at the 8 a.m. (PR>F = 0.10) and 12 noon 

(PR>F = 0.12) time periods, thus reflecting the differences observed in 

Figure 5 during the same time periods. However, a t-test of the 

hypothesis that there is a difference in the overall TSH serum levels 

between normal nasal breathing and bypassed breathing was not significant 

at the 95% confidence level. 

Table 7 highlights the correlations between the serum levels of TSH 

and the other parameters for the entire experiment as well as during the 

four phases of the experiment. It showed that there was a significant 

but small negative correlation between TSH serum levels and heart rate, 

rectal temperature, and room temperature (i.e., as TSH serum levels 



Table 6. F-values and probabilities from the analysis of variance comparing normal nasal breathing 
(Phases 1+2+4) vs. bypassed breathing (Phase 3) 

Time Resp. rate Heart rate Rectal temp. Room temp. TSH 

F PR>F F PR>F F PR>F F PR>F F PR>F 

8 a.m. 18.00 0.002 0.97 0.35 3.12 0.11 1.13 0.32 3.40 0.10 

12 noon 0.00 0.99 0.13 0.73 0.28 0.61 0.35 0.57 3.00 0.12 

4 p.m. 0.14 0.72 4.93 0.05 3.80 0.08 1.37 0.27 0.00 0.95 

8 p.m. 14.04 0.005 2.83 0.13 2.81 0.13 0.30 0.60 0.05 0.83 



Table 7. Correlation of TSH serum levels with physiological data 

TSH serum levels 

_ ^ Total Phases of experiment 
Parameters experiment 

1 2 3 4 

R PR>R R PR>R R PR>R R PR>R 

Resp. rate 0.01 0.80 -0.10 0.28 0.01 0.88 0.15 0.11 -0.10 0.27 

Heart rate -0.19 0.0001 -0.21 0.02 -0.25 0.004 -0.21 0.02 -0.06 0.48 

Rect. temp. -0.11 0.01 -0.16 0.08 0.06 0.51 -0.11 0.26 -0.26 0.0004 

Room temp. -0.09 0.05 -0.00 0.99 0.08 0.39 -0.11 0.22 -0.43 0.0001 
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increased, these parameters decreased and conversely, as TSH serum levels 

decreased, these parameters increased). The significant but small nega­

tive correlation between TSH serum levels and heart rate was present 

during the first three phases of the experiment. The significant but 

small negative correlations between TSH serum levels and both rectal and 

room temperatures observed for the total experiment were due to the 

greater and highly significant negative values for these correlations 

during Phase 4. 

Figure 6 presents graphs demonstrating that the serum levels of TSH 

over time varied during the four phases of the experiment. No consistent 

pattern was, however, observed. 



Figure 6. Graphs of serum TSH levels over time of sampling with each 
phase of the experiment 

(Normal Phase = Phase 1; Pre-bypass Phase = Phase 2; Bypass 
Phase = Phase 3; Post-Bypass Phase = Phase 4). 
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DISCUSSION 

Sheep were used in this investigation for the following reasons: 

1. Although most mammals can regulate body temperature within 1*C 

(Scholander et al., 1950), the sheep has been found to be the most thermo­

stable homeotherm (Graham et al., 1959; Bligh and Harthoom, 1964, 1965; 

Hemingway et al., 1966), being able to survive in both hot and cold 

environments (Lee, 1950; Schmidt-Nielsen, 1964). Their successful 

survival in hot environment has been attributed to panting (Lee, 1950; 

Baker and Hayward, 1968a) and to the cooling of the brain via the caro­

tid rete within the cavernous sinus. The latter allows a rise in body 

temperature without elevating the brain temperature above a critically 

damaging level (Baker and Hayward, 1968a; Young et al., 1976). 

2. All the blood destined to supply the brain of the sheep first 

passes through the carotid rete (Baldwin and Bell, 1963; Baldwin, 1964; 

Baker and Hayward, 1968d; Baldwin and Yates, 1977) and is thus tempera­

ture conditioned. The basilar artery dees not appear to contribute 

significantly to the formation of the cerebral circle (Circle of Willis) 

in the sheep and is considered to be a caudally directed branch of that 

circle (Daniel et al., 1953). 

3. Hemingway et al. (1966) reported that the hypothalamus in the 

sheep is the coolest portion of the brain, because of its close prox­

imity to the cerebral arterial circle which receives temperature condi­

tioned blood from the carotid rete within the cavernous sinus. Thus, 

any change in the local hypothalamic temperature by reducing the 
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efficiency of the countercurrent "internal heat exchange system" in the 

cavernous sinus may affect pituitary hormone secretions, similar to those 

evoked by direct thermal stimulation of this area. 

4. Previous work from the same laboratory (Krabill, 1979) demon­

strated that hypothalamic temperature could be elevated as much as 1°C 

by interrupting the normal nasal breathing via an upper respiratory by­

pass cannula implanted chronically into the trachea of sheep. Krabill's 

work, in the sheep, substantiated the importance attached to "external 

and internal heat exchangers" expounded by Magilton and Swift (1967, 

1968, 1969) for regulation of the canine brain temperature. 

In this study, the thyroid stimulating hormone (TSH) was investi­

gated for the following reasons: 

1. It is an important regulator of metabolic heat production via 

its influence on thyroxine secretion from the thyroid gland (Turner and 

Bagnara, 1976). 

2. Its rate of secretion in the rat, goat, and baboon is not only 

influenced by environmental temperatures, but also by direct local 

changes in hypothalamic temperatures (McClure and Reichlin, 1964; Gale 

et al., 1970; Leppâluoto et al., 1974a). In addition, Andersson et al. 

(1963) believed that the preoptic/anterior hypothalamic region controlled 

the TSH secretion in the rat by exerting an inhibitory tone which was 

proportional to the rise in temperature of the area. They believed that 

lowered hypothalamic temperatures proportionally decreased the inhibi­

tion. 
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3. Borger and Davis (1974) developed a radioimmunoassay (RIA) 

specifically for the ovine TSH which could provide an accurate assessment 

of TSH serum levels. 

The premise of this investigation was based on the facts that; 

1. There is a temperature differential of as much as 1®C between 

the cerebral and core blood in the relaxed, unanesthetized sheep, because 

of the countercurrent heat exchange between the carotid rete and the 

cooled venous blood in the cavernous sinus (Baker and Hayward, 1968d). 

2. This temperature differential can be removed by interrupting the 

normal nasal breathing which reduced the effective cerebral cooling of 

the "internal heat exchanger" (Krabill, 1979). 

3. Since TSH serum levels are influenced by hypothalamic tempera­

tures, this increased hypothalamic temperature demonstrated by Krabill 

may affect the serum levels of TSH. 

The following procedures were therefore followed in the experimental 

design, to minimize any factor, other than normal blood temperature, that 

may affect the secretion of TSH: 

1. Each animal served as its own control and all experimental 

animals were treated alike as much as possible. However, individual 

variations, which were highly significant (PR > 0.0001) throughout the 

entire experiment, cannot be entirely eliminated. This factor can be 

minimized, however, by the experimental design which allows each animal 

to serve as its own control (Brown-Grant and Pethes, 1960), as well as, 

by treating all experimental units alike (Cochran and Cox, 1957). Thus, 

attempts were made, as much as possible, to treat all animals alike in 
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regard to handling, feed, water, housing, surgical procedures, and 

sampling intervals. 

2. The seven day period used to accustom the animals to the 

handling necessary for the experiment was an attempt to reduce distur­

bance stress. However, this was not always successful. Stress of any 

kind is known to influence secretions of pituitary hormones (Brown-Grant 

and Pethes, 1960; Falconer, 1967; Leppaluoto et al., 1974a; Hefco et al., 

1975; Dohler et al., 1977a,b). The animal room was also being used con­

currently by two other researchers. Occasionally, while recording the 

physiological data, if someone walked into or a group of people walked 

by the room an increase in heart rate was noticed. 

3. The external jugular catheter for withdrawing blood samples was 

designed to reduce the painful stress of jugular venipuncture as far as 

feasible, although it could be argued that the TSH serum levels of Phase 

1 do not necessarily represent the true normal serum levels of TSH, 

because of the surgical stress inflicted by the implanted venous catheter. 

However, it was believed to be very minimal since the TSH serum levels 

of Phase 2 were not appreciably different from Phase 1 (Figure 4). The 

blood samples of Phase 2 were taken after chronic tracheal implantation 

of the bypass cannula, and it was considered a good indication that if 

this relatively more stressful tracheal surgery did not affect the TSH 

serum levels, the less stressful external jugular surgery would have very 

little influence. 

The results of the experiment (Figure 4) showed a small increase 

(4.02%) in serum levels of TSH during the bypassed phase, as compared to 
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the other three normal nasal breathing phases. When the results are com­

pared over time (Figure 5), this overall 4.02% increase, during Phase 3, 

was due largely to increases at 8 a.m. (8.83%) and at 12 noon (7.40%). At 

4 p.m. and 8 p.m., the serum TSH levels were the same as and even slightly 

lower, respectively, than the other three phases. Although a t-test of 

the hypothesis that there is a difference in serum TSH levels between by­

passed breathing (Phase 3) and normal nasal breathing (Phases 1, 2, and 4) 

was not significant at the 95% confidence level. Table 6 demonstrates that 

the increases at 8 a.m. and 12 noon almost approached a significance at the 

90% and 88% confidence level, respectively. This nonsignificance could 

stem from the fact that the animals in this investigation were not suffi­

ciently temperature-stressed, as experiments were conducted on resting, 

unanesthetized subjects. In most studies involving the effects of temper­

ature on blood levels of endocrine hormones, especially TSH, extremes in 

temperatures were necessary to observe significant changes in hormone 

levels. For example, rats kept in a thermoneutral environment are usually 

placed in either an environment of 0°-5°C (MacFarlane, 1963; Leppaluoto 

et al., 1974a) or in an environment of 40°C (Mueller et al., 1974) to 

demonstrate significant increases or decreases, respectively, in serum TSH 

levels. In addition, Forsling et al. (1975) did not observe any change in 

plasma antidiuretic hormone (ADH) levels in the pig, until the rectal tem­

perature was raised to 43°C. Baker et al. (1975) demonstrated that cold 

stimulation of nerve endings isolated from the bovine posterior pituitary 

gland caused release of vasopressin and oxytosin; however, the temperature 

of the medium in which the nerve endings were placed was kept at 0*C. Also, 
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in the goat, the preoptic region of the hypothalamus had to be cooled to 

34°C (Andersson et al., 1962a,c, 1963) or heated to 41°C (Andersson et 

al., 1962b) before the appropriate TSH responses were evident. In the 

present experiment, although room temperature varied significantly 

between phases of the experiment (PR > F = 0.01), the maximum variation 

was not more than 1.70*C between phases. When the averaged room tempera­

ture of the three normal nasal breathing phases (Phases 1+2+4) are 

compared against the bypassed phase (Phase 3), the variation was only 

0.22*C. Considering the 35-40°C changes in environmental temperature 

in the rat experiments, the room temperature changes in this experiment 

most probably did not represent a significant thermal threat to cause 

significant changes in serum TSH levels. A similar situation appears to 

exist concerning rectal temperature. In the ADH experiment in the pig 

(Forsling et al., 1975), a rectal temperature change of approximately 

4°C was needed to cause significant changes in blood levels of ADH. 

Similarly, the hypothalamic temperature changes in the goat (Andersson 

et al., 1962a,b,c, 1963) necessary to cause changes in blood levels of 

TSH were approximately + 4°C. In this experiment, rectal temperature 

only varied 0.16°C between the normal nasal breathing phases (Phases 

1+2+4) and the bypassed phase (Phase 3). Although rectal tempera­

ture is not the most accurate indicator of brain temperature, it is a 

fairly reliable estimate of blood temperature when there is a suffi­

ciently gradual change in climatic temperatures (Bligh, 1957b). Thus, 

the small variations in the rectal temperature in this investigation, 

reflected only small variations in blood temperature, which did not 
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represent a significant thermal change to cause significant variations 

in serum TSH levels. It is interesting to note that lowering the hypo­

thalamic temperature 0.5°C in humans, as measured by tympanic membrane 

temperature, had no significant effect on radioimmunoassay of serum TSH 

levels (Berg et al., 1966). It thus appears that if temperature changes 

of either the environment or of the body are to significantly affect the 

serum levels of TSH, the changes have to be of a more significant magni­

tude than the changes present in this investigation. 

Even though the small increase in serum TSH levels during Phase 3 

was not statistically significant, this observation does merit discussion 

since a decrease, instead of an apparent increase, would be expected if, 

as Krabill (1979) demonstrated, the temperature around the hypothalamus 

increased during interruption of the normal nasal breathing. The follow­

ing observations in this investigation were in agreement with similar 

observations stated in the literature: 

1. There were significant negative correlations (Table 7) between 

serum TSH levels and rectal temperature (PR > R = 0.01) and room tempera­

ture (PR > R = 0.05), indicating that serum TSH levels were inversely 

related to environmental and rectal temperatures as stated in the 

literature for the rat and guinea pig (Cottle and Carlson, 1956; Woods 

and Carlson, 1956; D'Angelo, 1960; Heroux, 1960, Leppaluoto et al., 

1974b). However, the increased serum levels of TSH during Phase 3 were 

not due to changes in room temperature in this experiment because the 

room temperature during this phase averaged 0.22°C higher than the room 

temperatures of the other three phases. Thus, if serum TSH levels were 
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inversely relate 1 to environmental temperature, then a decrease in TSH 

levels should have occurred during Phase 3 contrary to a modest increase 

as evidenced in this experiment. Minett and Sen (1945) concluded that 

the thermostability of the sheep is not influenced by small changes in 

ambient temperature and Bligh et al. (1965) attributed this to the 

insulating quality of the fleece. Since the sheep in this investigation 

were sheared, there is the possibility that room temperature could have 

influenced thermoregulation, however, Eyal (1963) found little differ­

ence in the thermoregulatory behavior of shorn and unshorn sheep. 

2. During the bypassed phase, the rectal temperature averaged 

0.16°C lower than the averaged rectal temperature of the other three 

phases. If, as stated above, the literature is correctly interpreted in 

that serum TSH levels are inversely related to rectal temperature, then 

the increased serum TSH levels observed during Phase 3 were related to 

the lower rectal temperature during this phase. 

3. There was a monophasic variation in rectal temperature, in that 

it was lower at 8 a.m. (average of 39.6°C) than at 8 p.m. (average of 

39.7°C), which has been previously reported in the sheep (Veeraraghavan 

and Mendel, 1963; Bligh et al., 1965). Holmes et al. (1960) reported 

that amongst several groups of sheep, the Rambouillet had the greatest 

monophasic variation in rectal temperature, averaging as much as 1.0° -

1.5°C. In the baboon (Sundsten and Matheson, 1966) and rhesus monkey 

(Hamilton, 1963; Hammel et al., 1963) this monophasic rectal temperature 

variation was reflected in similar variations in hypothalamic temperature. 

These investigators observed that hypothalamic temperature was lowest 

in the morning and highest in the evening. Hayward and Baker (1969) 
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attributed this .ooling of the hypothalamus at night during resting 

periods to increased heat loss due to peripheral vasodilatation, together 

with decreased heat production due to muscular inactivity, leading to 

cooling of the core blood, body, and brain. They further believed that 

during the course of the active day period, vasoconstriction and increased 

muscular heat production increased core blood temperature and this, in 

turn, gradually raised the hypothalamic temperature. This hypothesis is 

in accord with the observations that in noncarotid rete homeotherms, the 

temperature of the brain is influenced directly by the temperature of the 

core blood perfusing it (Hayward et al., 1966; Hemingway et al., 1966; 

Hunter and Adams, 1966; Hayward and Baker, 1969; Richards, 1970; Cabanac 

and Caputa, 1979). This might explain the small increases in serum TSH 

levels at 8 a.m. and 12 noon during Phase 3 of this experiment, as com­

pared to the other three phases (Figure 5). Since the temperature con­

ditioning system within the cavernous sinus became, seemingly, less 

efficient because of interruption in normal nasal breathing (Krabill, 

1979) during Phase 3 of this experiment, it is inferred from the above 

observations that the hypothalamic temperature became directly influenced 

by core temperature blood in these sheep during this phase. If the 

temperature of this blood was reduced at night, as proposed by Hayward 

and Baker (1969), it would cool the hypothalamus which would evoke an 

increase in serum TSH levels during the morning hours. As the core 

blood temperature increased towards evening, this would signal a 

decrease, as was observed, in serum TSH levels. During the normal nasal 

breathing phases (Phases 1, 2, and 4), the influence of these small 
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variations in core blood temperature was reduced by a functional "internal 

heat exchange system" within the cavernous sinus and thus the response of 

TSH to these temperature changes was also reduced. 

4. Leppaluoto et al. (1974b) observed in the rat that there was a 

circadian fluctuation in serum TSH levels with increasing levels during 

the morning hours, reaching a peak between 11 a.m. and 2 p.m., and 

decreasing levels in the afternoon; the lowest levels occurring between 

4 p.m. and 9 p.m. These observations of Leppaluoto et al. correlated 

inversely with the monophasic hypothalamic temperatures described in the 

literature (Hamilton, 1963; Sundsten and Matheson, 1966) and also were 

supported by the studies which demonstrated the inverse relationship 

between serum TSH levels with direct thermal stimulation of the preoptic/ 

anterior hypothalamic region (Andersson et al., 1962a,b, 1963; McClure 

and Reichlin, 1964; Reichlin, 1964; Leppaluoto et al., 1974a). During 

the bypassed phase of this experiment (Figure 6), a circadian pattern 

similar to that described by Leppaluoto et al. was observed in the serum 

TSH levels in the sheep. Although this observation cannot be equated to 

the activities of the two species, since it is generally accepted that 

rats are more active at night than during the day, it is possible to 

equate the similarities of the pattern of serum TSH levels during the 

bypassed phase in the sheep in this experiment and that observed in the 

rat to changes in body temperature which would affect hypothalamic 

temperature. It is possible that, in the rat, increases in serum TSH 

levels during the morning hours may be due to increased body heat loss 

brought about by inactivity of this small animal, as proposed by Hayward 
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and Baker (1969). As the body begins to warm, during the late afternoon 

due to increased heat production, TSH levels begin to decrease, reaching 

their lowest levels at night when body heat is highest because of increased 

nocturnal activity. In the sheep, the increased serum TSH levels during 

the morning hours could be due to increased body heat loss from inactivity 

during the night. However, because of the larger body size of the sheep, 

it may take until the afternoon to increase body temperature sufficiently 

to cause a decrease in serum TSH levels. The lowest serum TSH levels 

would occur late in the evening vtien body temperature was at its highest, 

and then start to decline again because of inactivity at night. Since 

this circadian pattern was more pronounced during the bypassed phase 

(Phase 3) of the experiment, it is suggested that interruption in normal 

nasal breathing by reducing the efficiency of the "internal heat exchanger," 

caused a carotid rete species to react to changes in body temperature 

similar to a noncarotid rete species. 

Although it is possible that the increased serum TSH levels during 

the bypassed phase (Phase 3) of this experiment may have resulted from 

more direct stimulation via core blood temperature, which is considered 

to be cooler than brain temperature in all homeotherms at rest in a 

neutral environment (Baker and Hayward, 1967a,b), as was the conditions in 

this experiment, there are several other factors that may have caused this 

small increase: 

1. This increase during the bypassed phase could have been due to 

emotional stress. When these animals were placed on bypassed breathing, 

they would not eat temporarily unless they became starved or unless 

another sheep, not on bypassed breathing, was present and eating. This 
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behavioral chang- was attributed to a decreased sense of smell owing to 

the interrupted air flow in the nasal cavity. The emotional stress of 

loss of smell could have increased serum TSH levels during this phase. 

However, this would not account for the circadian fluctuations seen 

during Phase 3 unless one considered that the emotional stress was 

greater in the morning and decreased as the day progressed. 

2. The increase may have been caused by stress related release of 

other pituitary hormones and/or neurohormones. Stress is known to 

accelerate adrenal corticotrophic hormone (ACTH) release. However, the 

increases observed in this experiment could not be due to increased 

ACTH secretion, since ACTH inhibits TSH secretion which would result in 

a decreased serum TSH level (Brown-Grant and Pethes, 1960; MacFarlane, 

1963). However, there is a possibility that stress related release of 

norepinephrine from adenergic nerve fibers in the hypothalamus may be 

involved (Tuomisto et al., 1975; Krulich et al., 1977). But this is not 

known since norepinephrine levels were not investigated. 

3. These increases could have been due to decreased feedback 

inhibition of thyroid hormone on TSH secretion (Turner and Bagnara, 

1976). Since triiodothyronine (T^) and tetraiodothyronine (T^) were not 

assayed, it could only be speculated that this might have occurred 

either because of decreased thyroid hormone secretion or increased 

peripheral utilization during Phase 3, which could also have resulted 

from stress. However, one would have to consider again that the stress 

progressively decreased during the day to account for the circadian 

fluctuations in serum TSH levels observed during this phase. 
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4. The unexpected increases noticed in this investigation, in light 

of the work of Krabill (1979), may have been due to the time of sampling. 

The increase in hypothalamic temperature, when the animals were placed 

on bypassed breathing in Krabill's investigation, was greater in the 

evening, at a time when the differences between brain and body tempera­

ture in animals with a functional carotid rete were at their peak, than 

in the morning. In this experiment, the serum levels of TSH during the 

evening (8 p.m.) were lower (approximately 1.0%) for the bypassed phase, 

as compared to the normal nasal breathing phases. This would be in line 

with the expected decrease caused by increased brain temperature because 

of the interruption in normal nasal breathing, as observed by Krabill. 

It could be possible that due to the heat loss during the inactive 

nocturnal period, as proposed by Hayward and Baker (1969), the differ­

ences between brain and body temperatures were lowered and that this 

cooling of the hypothalamus caused increased TSH levels in the morning, 

which diminished as the body temperature increased during the active day 

period in Phase 3. However, since hypothalamic temperature was not 

recorded at the time of blood samplings, this possibility is just a 

speculation. It would explain the similarities in the serum TSH 

levels observed during the bypassed phase and the results of Leppaluoto 

et al.(1974b) in the rat. It would also explain the unexpected increases 

in light of the work of Krabill (1979). Further, it would show that 

during bypassed breathing in this experiment, the brain temperature was 

being more directly influenced by core blood temperature, as is normally 

found in noncarotid rete species, including primates (Hayward et al.. 
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1966; Hemingway al., 1966; Baker et al., 1974; Caputa et al., 1976a,b), 

than during normal nasal breathing due to the decreased temperature con­

ditioning ability of both "internal and external heat exchangers." 

This research was conducted for developing an animal model simulating 

physical conditions existing in monogolism (Down's Syndrome) and in people 

with tracheostomies due to laryngeal cancer. Some similarities were ob­

served between these experimental animals and mongoloids: 

1. Alamanova (1973) observed that the air flow through the nasal 

cavity was reduced, which could be due to the underdeveloped facial 

bones (Benda, 1946). As a result, for the most part, mongoloids are 

mouth breathers. This condition would compare favorably with the by­

passed phase of sheep in this investigation, since mouth breathing in 

mongoloids would reduce the effective brain cooling mechanisms believed 

to occur via the nasal cavity in humans (Caputa and Cabanac, 1978; 

Cabanac and Caputa, 1979). 

2. Benda and Bixby (1939) found the basal metabolic rate in mon­

goloids to be significantly low, indicating dysfunction of the thyroid 

endocrine system. Although this condition is probably related to the 

Trisomy 21 aberration in mongoloids, there is a possibility that it could 

be due to abnormal brain temperature affecting directly hypothalamic 

influence in the release of this hormone. However, more investigation 

is needed in this area owing to conflicting reports of hypothyroidism 

(Baxter et al., 1975) indicating reduced levels of TSH, no difference 

(Saxena and Pryles, 1965; Hillman, 1969), and increased levels of TSH in 

mongoloids (Murdoch et al., 1977). A similar situation may exist in 
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people with permanent tracheostomies; however, possible endocrine differ­

ences in these patients, compared to normal nasal breathers, have not yet 

been investigated. 
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SUMMARY AND CONCLUSIONS 

The results of this investigation demonstrated that when the normal 

brain temperature regulation mechanism i.e., countercurrent heat exchange 

between the carotid rete and the cavernous sinus is deranged by inter­

rupting the normal nasal breathing in the sheep, there was a small increase 

in serum TSH levels. This increase was especially evident during the 

morning hours but decreased progressively towards evening. The increase 

was not attributed to room temperature since during the bypassed phase 

(Phase 3), the room temperature averaged 0.22°C higher than during the 

normal nasal breathing phases (Phases 1, 2, and 4). However, it may have 

been related to rectal temperature which decreased 0.16°C during the by­

passed phase, as compared to the three normal nasal breathing phases. It 

also considered possible that this increase could have resulted from: 

1) emotional stress due to temporary loss of smell during the bypassed 

phase, 2) stress related release of other hormones, and 3) decreased feed­

back inhibition of thyroid hormone because of stress. However, the trends 

in serum TSH levels during Phase 3, which followed similar trends pre­

sented in the literature in noncarotid rete species, suggested that the 

increase was caused by direct stimulation of cooler core blood in the 

bypassed animal, than in the normal nasal breathing animal. This has 

been shown to be due to a lowered body temperature during the morning 

hours of the day, which has been hypothesized to be caused by loss of 

heat during a nocturnal inactive period (Hayward and Baker, 1969). Since 

this appears to be opposite to the results obtained by Krabill (1979), 

it is suggested that the experiment be repeated, adding recordings of 
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hypothalamic tec>erature during time of blood samplings to test whether 

the circadian fluctuations in TSH serum levels observed during bypassed 

breathing in this investigation are due to similar fluctuations in 

hypothalamic temperature caused by a general body cooling at night, which 

subsequently increases during the day as suggested by Hayward and Baker 

(1969). 

Although a small increase in serum TSH levels was observed during 

the bypassed phase, this increase was not statistically significant at 

the 95% confidence level. Since in most studies involving the effects of 

temperature on blood levels of TSH extremes in temperature are necessary 

to elicit the appropriate response of TSH, it was considered that, in 

this experiment, the 0.22°C change in room temperature and the 0.16°C 

change in body temperature observed between the bypassed phase and the 

three normal nasal breathing phases did not represent a significant 

thermal change to significantly alter serum TSH levels. Thus, this in­

significant temperature change was probably the cause of the nonsignifi­

cant change in serum TSH levels. It is suggested that this aspect be 

investigated by subjecting these animals to more stressful environmental 

conditions. 

It is, therefore, concluded that the results suggest interruption 

in normal nasal breathing, by decreasing the efficacy of the "internal 

heat exchanger" within the cavernous sinus, causes the sheep, a carotid 

rete species, to react to changes in body temperature similar to a non-

carotid rete species. This gives support to the possibility that these 

bypassed animals may be a useful model simulating physical conditions in 

humans. However, further investigation is needed. 
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